Web developer and graphic designer Asun Phong creates these polar graph art equations with the app `*Quick Graph*´.

“I got this handy app on my phone called ‘Quick Graph’ which seems to work quite well for sketching polar graph art equations. It’s not as powerful by any means as Mac Grapher, but it works well for experimenting with different mathematical shape dynamics. Here are some designs produced waiting for the bus over the past few weeks. Images were run off the smart phone through Instragram.”*Phong*

r=2

r=6-ceil(abs(cos(Θ⋅1)^2⋅2)⋅2)

r=6+ceil(abs(cos(Θ⋅1)^2⋅2)⋅2)

r=7+ceil(abs(cos(Θ⋅1)^2⋅2)⋅2)+abs(tan(Θ))

r=8+ceil(abs(cos(Θ⋅1)^2⋅2)⋅2)+abs(tan(Θ))+abs(tan(Θ+π/2))

r=8-ceil(abs(cos(Θ⋅1)⋅2)⋅2)+min(ceil(abs(tan(Θ⋅1)⋅0.3)),6)

r=10+ceil(abs(cos(Θ⋅1)^2⋅2)⋅2)+abs(tan(Θ))+abs(tan(Θ+π/2))+abs(tan(Θ⋅8))

r=2+cos(Θ⋅6+π)

r=4+cos(Θ⋅6)

r=6+cos(Θ⋅6+π)

r=8+cos(Θ⋅6)

r=10+cos(Θ⋅6+π)

r=11

r=1

r=11.5+(cos(Θ⋅6)⋅0.99)⋅0.5

r=12

r=14+ceil(abs(cos(Θ⋅6)^1)⋅2)

r=13+ceil(abs(cos(Θ⋅6)^3)⋅2)

r=12+ceil(abs(cos(Θ⋅6)^16)⋅2)

r=18-ceil(abs(cos(Θ⋅6+π)^16)⋅2)

r=0.5

r=3-abs(cos(Θ⋅5+π/1))⋅2

r=6-min(abs(tan(Θ⋅5+π/1))/10,3)

r=8-min(abs(tan(Θ⋅1+π/1))/20,5)

r=10+min(abs(tan(Θ⋅1+π/1))/10,3)

r=16-min(abs(tan(Θ⋅1+π/1))/10,3)

r=22-min(abs(tan(Θ⋅1+π/1))/10,9)

r=7-min(abs(tan(Θ⋅1+π/1))/20,3)+sin(Θ⋅20-π/2)⋅0.5

r=max(22+abs(tan(Θ⋅20)^2),22)-min(abs(tan(Θ⋅1+π/1))/10,9)

r=2

r=max(0.5+ceil(abs(tan(Θ⋅3)^3⋅5)),15)+ceil(cos(Θ⋅3+π/2)^9⋅1)⋅1.5

r=ceil(abs(cos(Θ⋅3+π/2)^4)⋅2)⋅2+10+cos(Θ⋅3+π/2)⋅1.5+cos(Θ⋅3+π/2)^2+abs(tan(Θ⋅1.5-π/4))^3

r=ceil(abs(cos(Θ⋅1.5-π/4)^3)⋅3)+1

r=ceil(abs(cos(Θ⋅1.5+π/4))⋅2)⋅3

r=7.3+ceil(abs(sin(Θ⋅1.5-π/4)^5⋅2.0))-ceil(abs(sin(Θ⋅1.5+π/4)^24⋅2.0))+cos(Θ⋅3+π/2)^9

r=9.5+abs(ceil(cos(Θ⋅3+π/2)^3⋅1.99))+cos(Θ⋅3+π/2)⋅1.5+cos(Θ⋅3+π/2)^2+abs(tan(Θ⋅1.5-π/4))/10

r=2+(((abs(cos(Θ⋅3)))+(0.25-(abs(cos(Θ⋅3+π/2))))⋅2)/(2+abs(cos(Θ⋅6+π/2))⋅8))

r=3+(((abs(cos(Θ⋅6)))+(0.25-(abs(cos(Θ⋅6+π/2))))⋅2)/(2+abs(cos(Θ⋅12+π/2))⋅8))

r=1+(((abs(cos(Θ⋅3)))+(0.25-(abs(cos(Θ⋅3+π/2))))⋅2)/(2+abs(cos(Θ⋅6+π/2))⋅8))

r=2

r=8+ceil((abs(cos(Θ⋅2))⋅3))

r=4+ceil(abs(cos(Θ)⋅3))

r=12+ceil(abs(cos(Θ⋅4+π/2)⋅3))

r=16+ceil(abs(cos(Θ⋅8)⋅2))

r=18+ceil(abs(cos(Θ⋅16)⋅2))

r=20+ceil(abs(cos(Θ⋅16+π/2)⋅2))+cos(Θ⋅16)

via [ScienceIsBeauty]

Hi my name is gimmy

LikeLike